17,443 research outputs found

    Narrow Technihadron Production at the First Muon Collider

    Get PDF
    In modern technicolor models, there exist very narrow spin-zero and spin-one neutral technihadrons---piT0pi^0_T, rhoT0rho^0_T and omegaTomega_T---with masses of a few 100 GeV. The large coupling of πT0\pi^0_T to ÎŒ+Ό−\mu^+\mu^-, the direct coupling of rhoT0rho^0_T and omegaTomega_T to the photon and Z0Z^0, and the superb energy resolution of the First Muon Collider may make it possible to resolve these technihadrons and produce them at extraordinarily large rates.Comment: 11 pages, latex, including 2 postscript figure

    Vacuum Alignment in Technicolor Theories-I. The Technifermion Sector

    Get PDF
    We have carried out numerical studies of vacuum alignment in technicolor models of electroweak and flavor symmetry breaking. The goal is to understand alignment's implications for strong and weak CP nonconservation in quark interactions. In this first part, we restrict our attention to the technifermion sector of simple models. We find several interesting phenomena, including (1) the possibility that all observable phases in the technifermions' unitary vacuum-alignment matrix are integer multiples of \pi/N' where N' \le N, the number of technifermion doublets, and (2) the possibility of exceptionally light pseudoGoldstone technipions.Comment: 19 pages, Latex with one postscript figur

    Charge assignments in multiple-U(1) gauge theories

    Get PDF
    We discuss the choice of gauge field basis in multiple-U(1) gauge theories. We find that there is a preferred basis, specified by the charge orthogonality condition, in which the U(1) gauge fields do not mix under one-loop renormalization group running.Comment: 7 pages, LaTe

    The Collider Phenomenology of Technihadrons in the Technicolor Straw Man Model

    Get PDF
    We discuss the phenomenology of the lightest SU(3)_C singlet and non-singlet technihadrons in the Straw Man Model of low-scale technicolor (TCSM). The technihadrons are assumed to be those arising in topcolor--assisted technicolor models in which topcolor is broken by technifermion condensates. We improve upon the description of the color--singlet sector presented in our earlier paper introducing the TCSM (hep-ph/9903369). These improvements are most important for subprocess energies well below the masses of the technirho and techniomega, and, therefore, apply especially to e+e- colliders such as LEP and a low--energy linear collider. In the color--octet sector, we consider mixing of the gluon, the coloron V_8 from topcolor breaking, and four isosinglet color--octet technirho mesons. We assume, as expected in walking technicolor, that these technirhos decay into qbar-q, gg, and g-technipion final states, but not into technipion pairs. All the TCSM production and decay processes discussed here are included in the event generator Pythia. We present several simulations appropriate for the Tevatron Collider, and suggest benchmark model lines for further experimental investigation.Comment: 42 pages, 7 figure

    Resonant and Non-Resonant Effects in Photon-Technipion Production at Lepton Colliders

    Get PDF
    Lepton collider experiments can search for light technipions in final states made striking by the presence of an energetic photon: e+e- \to \photon\technipion. To date, searches have focused on either production through anomalous coupling of the technipions to electroweak gauge bosons or on production through a technivector meson (\technirho, \techniomega) resonance. This paper creates a combined framework in which both contributions are included. This will allow stronger and more accurate limits on technipion production to be set using existing data from LEP or future data from a higher-energy linear collider. We provide explicit formulas and sample calculations (analytic and Pythia) in the framework of the Technicolor Straw Man Model, a model that includes light technihadrons.Comment: 11 pages, including title page, 3 figures; version 2: references adde

    Composite Scalars at LEP: Constraining Technicolor Theories

    Full text link
    LEPI and LEPII data can be used to constrain technicolor models with light, neutral pseudo-Nambu-Goldstone bosons, Pa. We use published limits on branching ratios and cross sections for final states with photons, large missing energy, jet pairs, and b bbar pairs to constrain the anomalous Pa Z0 Z0, Pa Z0 photon, and Pa photon photon couplings. From these results, we derive bounds on the size of the technicolor gauge group and the number of technifermion doublets in models such as Low-scale Technicolor.Comment: 27 pages (including title page), 15 figures, 6 tables. version 2: In addressing PRD referee comments, we have significantly expanded our manuscript, to include detailed discussion of limits from LEP II data, as well as expanding the number or specific models to which we apply our results. As a result, we have changed the title from "Z0 decays to composite scalars: constraining technicolor theories

    Probing the N=14N = 14 subshell closure: gg factor of the 26^{26}Mg(21+^+_1) state

    Full text link
    The first-excited state gg~factor of 26^{26}Mg has been measured relative to the gg factor of the 24^{24}Mg(21+2^+_1) state using the high-velocity transient-field technique, giving g=+0.86±0.10g=+0.86\pm0.10. This new measurement is in strong disagreement with the currently adopted value, but in agreement with the sdsd-shell model using the USDB interaction. The newly measured gg factor, along with E(21+)E(2^+_1) and B(E2)B(E2) systematics, signal the closure of the Îœd5/2\nu d_{5/2} subshell at N=14N=14. The possibility that precise gg-factor measurements may indicate the onset of neutron pfpf admixtures in first-excited state even-even magnesium isotopes below 32^{32}Mg is discussed and the importance of precise excited-state gg-factor measurements on sdsd~shell nuclei with N≠ZN\neq Z to test shell-model wavefunctions is noted.Comment: 8 pages, 5 figure

    Momentum dependent quark mass in two-point correlators

    Full text link
    A momentum dependent quark mass may be incorporated into a quark model in a manner consistent with dynamically broken chiral symmetry. We use this to study the high Q2Q^2 behavior of the vector, axialvector, scalar and pseudoscalar two-point correlation functions. Expanding the results to order 1/Q61/Q^6, we show the correspondence between the dynamical quark mass and the vacuum condensates which appear in the operator product expansion of QCD. We recover the correct leading logarithmic Q2Q^2 dependence of the various terms in the OPE, but we also find substantial subleading corrections which are numerically huge in a specific case. We conclude by using the vector minus axialvector correlator to estimate the π+−π0\pi^+ - \pi^0 electromagnetic mass difference.Comment: 18 pages, LaTeX, figures in accompanying uuencoded postscript file. Published version. References adde
    • 

    corecore